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Abstract. The spin Hall transport properties in a two-dimensional electron system with both Rashba
spin-orbit coupling (SOC) and magnetic impurities are investigated. Electrons are scattered by impurities
through an exchange interaction that leads to spin flip-flop processes and so changes the spin Hall effect
induced by the SOC. The spin Hall conductance is calculated in a 4-terminal system using the Landauer-
Buttiker formula and Green function approach. In comparison with the simulation results on nonmagnetic
impurities doping systems, our results reveal that the spin Hall conductance is still nonzero in a system
with a large density of magnetic impurities and a finite intensity of the exchange interaction between the
electrons and impurities, and its sign may be altered when the doping density and interaction strength are
large enough.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms — 72.15.Gd Galvanomagnetic and
other magnetotransport effects — 85.75.-d Magnetoelectronics; spintronics: devices exploiting spin polarized

transport or integrated magnetic fields
1 Introduction

Recently, the study of spintronics, as an active subfield
in condensed matter physics, has attracted intensive at-
tention for its potential applications in technology. Some
investigations are focused on the optical and spin trans-
port properties in spin-orbit coupling (SOC) electron sys-
tems. In two-dimensional (2D) electron systems, two types
of SOC have been actively investigated [1,2]. One is the
Rashba SOC, which is expressed in the effective Hamil-
tonian by a term of the form A(o®p, — o¥p,) with py
being the = or y component of the momentum, o, , the
Pauli matrices describing electron spin, and A the cou-
pling strength. The other is the Dresselhaus SOC with
the form of B(0®"p, — o¥py). The Rashba and Dres-
selhaus couplings create k-dependent effective magnetic
fields B(k) ~ A(py, —ps,0) and B(k) ~ B(psz, —py,0), re-
spectively, which act on the electron spin and induce spin
precession through the process of electron tunneling. As
a result, a transverse spin Hall current can be driven in
2D systems with SOC when there is a longitudinal volt-
age drop. The competition between these two different
SOC’s provides possible experimental applications to con-
trol the direction of the spin Hall current. On the other
hand, whether the universal value g= of intrinsic spin Hall
conductance is robust against disorder and other factors
is also being studied actively. Analytical results consid-
ering vertex corrections have revealed the cancellation of
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the spin Hall effect in the presence of arbitrarily small
disorder in 2D systems with Rashba SOC due to impurity
scattering [3,4].

In this paper, we focus on the effect of magnetic impu-
rities which exit in metals or semiconductors. We calculate
the change of the spin Hall conductance due to the scat-
tering of magnetic impurities in 2D systems with Rashba
SOC. The results reveal that the spin Hall conductance
(SHC) is still nonzero in systems with a large density of
magnetic impurities, and the sign of SHC can be changed
by varying the impurity density and strength of the ex-
change interaction between the electrons and magnetic im-
purities.

2 Model and formulism

The impure L x L square lattice as shown in Figure 1
is connected with four ideal leads which serve as four
electron reservoirs with different chemical potentials. The
spin exchange interaction between the electron spin and
magnetic impurities, which are treated as classical mag-
netic moments throughout the simulation, is described by
Jo -n;0(r —r;), where n; and r; are the unit vector along
the moment and the position of the ith impurity, o are
the Pauli matrices of the electron spin, r is the position
of the electron, and J is the coupling strength including
the value of the impurity moments. The disorder is intro-
duced by the random positions and orientations of impuri-
ties r; and n;. Using the tight-binding representation, the
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Fig. 1. A square two-dimensional sample with four ideal leads.
The spin-orbit coupling and the exchange interaction between
the electrons and magnetic impurities exist only in the shaded
square area.

Hamiltonian of a 2D electron system with Rashba SOC
and magnetic impurities has the following form

H=—tY cl cio+Vio > [(clicivs, —cl civa,r)

(ij)o %
—i(e] 1cirs, + el jcivs, 1) + Hel
+J Z CI,UO—U,U’CLU’ ‘n;, (1)

i,0,0"

where t is the nearest-neighbour hopping energy which
we set as energy units in our numerical simulation, Vj,
is the Rashba SOC strength, J is the exchange strength
between the electrons and magnetic impurities, and d,, &,
are vectors corresponding to the lattice spacing along the
x and y axes, respectively. The positions of the magnetic
dopants are random and their density is . The 3D unit
vector n = (sin ; cos ¢;, sin §; sin ¢;, cos 6;) stands for the
orientations of the magnetic moments which are uniformly
distributed in the whole unit sphere.

A charge current [ is driven from lead 1 to lead 2 by
a potential bias. At the same time, an outgoing spin Hall
current towards lead [ is given by I, = [—h/(2€)](I;; —
I;}) [5,6], where 7 and | indicate spins parallel and an-
tiparallel to the z-axis. The transverse spin-Hall current
along lead 3 in this system is given by IS’} = Gspg(V1—Va),
where Vi — V5 is the longitudinal voltage drop, and the
corresponding spin Hall conductance can be directly cal-
culated by the use of the Landauer-Biittikker formula [5, 6]

(&
Gapr = ——(Tyr 1 — Tay 1),
" 1= Tara = Taga)

where T}, 1 is the transmission coefficient from lead 1 to
spin ¢ channel of lead 4. With the Green function tech-
nique, the spin Hall conductance can be expressed as [6-8]

Gy = —%T&(FMG’“I}G“), 2)

where the trance is taken over the spin index, and n = £1
corresponds to spin up and spin down states, respectively.
I =i}, — (32,7 is the retarded electron self-energy in
the sample induced by the electron hopping connected
with lead [. The retarded and advanced Green functions
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are given by G" = m, and G° = (G")', respec-
tively. Here, F is the Fermi energy of the electrons, and H,
is the Hamiltonian of the square sample. The self-energy
can be computed by using the transfer matrices of the
leads [9,10]. In our calculation, G,y is averaged over 1000
realizations of randomly distributed magnetic impurities
with a given concentration.

3 Numerical results

The spin Hall conductance is plotted in Figure 2 as a
function of the doping density of magnetic impurities with
given values of the Rashba spin-orbit coupling Vj, and the
electron-impurity exchange interaction strength J. The er-
ror bars in all the figures throughout the simulation rep-
resent the statistical errors in the structural sampling av-
eraging. It can be seen that in most cases the spin Hall
conductance is nonzero even in the presence of a relatively
large density of magnetic impurities, despite the fact that
the impurities tend to suppress the magnitude of spin Hall
conductance to some extent. In the case of a weak ex-
change interaction (J = 0.2), almost no suppression can
be seen in the curve as the density of magnetic impurities
increases. For a given value of Vj,, the suppression of the
spin Hall conductance by the doping of magnetic impuri-
ties is increased by increasing the exchange interaction J.
This indicates that a large electron-impurity exchange and
a large density of magnetic impurities can in general de-
stroy the spin Hall effect by spin flip-flop scattering. When
electrons move near the magnetic impurities on the lattice
their spin orientations may be changed due to the inter-
action with impurities. The increase of the impurity den-
sity enhances the probability of spin flip-flop scattering.
In general, this may lead to the decrease of the spin Hall
conductance. However, we notice that with some specific
values of the parameters, such as Vs, = 0.1 and J = 2.5
in Figure 2, the sign of spin Hall conductance changes
when the impurity density is increased across a specific
value (x = 0.06 in the curve for V;, = 0.1 and J = 2.5
in Fig. 2). This means that in the presence of SOC, the
flip-flop scattering by impurities is not symmetric for up
and down electron spins although the orientations of the
impurity moments are random without any preferential di-
rection. Moreover, different signs of SHC with different Vi,
values also occur due to oscillations of the sideways spin-
resolved transmission coefficients (which will be shown in
Fig. 4). On the other hand, the influence of nonmagnetic
impurities, which scatter electrons by interaction, in the
form of ), Eic;facwé(r —r;) in the Hamiltonian, is also
simulated and shown in Figure 2. Here the potentials ¢;
at nonmagnetic impurities are randomly distributed be-
tween [—w/2, w/2] where the parameter w = 3.0¢, and the
density of impurities is x. Consistent with other analytical
and numerical results [6,11], we reproduce a vanishing spin
Hall conductance as the density of the nonmagnetic impu-
rities increases. Furthermore, there is no change of SHC
sign as the density of nonmagnetic impurities changes.
In Figure 3, we show the calculated Gz as a function
of the strength J of the exchange interaction between the
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Fig. 2. Spin Hall conductance Gsp as a function of the density of the magnetic (left panel) and nonmagnetic (right panel)

impurities for an different values of J, w and Vs, in 20 x 20 square lattice for an electron energy E = —2t.
008 —m— x=0.01 Vs0=0 1t sign change of the spin Hall conductance as J increases
0.06 e x=001 Vso=1.0t can be clearly seen for a larger impurity density (z = 0.1)
004 for both Vso = 0.1 and Vgp = 1. When the exchange in-
] teraction is weak, the probability of spin flipping is small,
= 0027 7“’*"’**'*fffo——w,.,,,,,.,,,1%}77 therefore the magnitude of G g diminishes but its sign re-
% 0.00 B s e S mains unchanged. As the exchange strength becomes large
o 02 enough, almost all electron spins are flipped, thus the spin
- Hall conductance changes its sign. A larger impurity den-
-0.04 - sity may enhance the tendency of the sign change of Gy .
006 _/./i/;/i/i/E/E Combining with the results shown in Figure 2, we can see
e that the spin flip-flop scattering of impurities is “biased”
0.08 in the presence of the SOC. This bias is usually opposite to
o T T — the spin Hall conductance when there is no impurity scat-
02 04 06 08 10 12 14 16 18 20 22 24 26 28 tering and the extent of the bias depends on the absolute

Jit value of Gg.

In Figure 4, we display the SHC as a function of the
strength of SOC with a nonzero density of magnetic im-
0.08 purities. Similar to what is found for two-dimensional
] —m— x=01 Vso0=0.1t systems with Anderson disorder and Rashba spin-orbit
0.06 1 —e—x=0.1 Vso=1.0t coupling, the G4y curves for different values of impurity
0.04 density and exchange interaction exhibit oscillations as
1 the SOC strength is varied over the range of 0 <V, < t.
2 0021 s W E/ili‘E‘Efi" Such oscillations are regarded as a manifestation of spin-
T 000 ) — & ﬁ/ 1 resolved transmission coefficients oscillations due to the
o 1 EX;\‘P*’E* ] interplay of the spin precession from the SOC and the
0027 /E R quantum interference in finite systems [5,6]. The charac-
-0.04 i/ teristic length of spin precession is Ly, ~ wt/Vy, [6,8],
006 /./ thus the oscillation period in the G — Vi, curves can be
] estimated by dVs, ~ 7/L with L being the system size.
-0.08 For our parameters, it is close to 0.16. The oscillation pe-
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Fig. 3. Spin Hall conductance as a function of the strength of
the electron-impurity exchange interaction for different values
of Vso and z. F = —2t, and the system is a 20 x 20 square

lattice.

electrons and impurities. Without any exchange interac-
tion (J = 0) G,y is positive in the case of Vso = 1 but is
negative in the case of Vo = 0.1. In both cases the abso-
lute value of G,y decreases as J increases from zero due
to the destructive effect of impurity scattering. This effect
is stronger for a larger impurity density. Interestingly, the

riod shown in Figure 4 is consistent with this anticipated
value, indicating the finite-size effect in spin procession. It
can be seen that the scattering of magnetic impurities has
no effect on this period, but it reduces the amplitudes of
the oscillations in the case of a large exchange interaction
and a large impurity density. This indicates that in the
sense of structural averaging, the period of spin preces-
sion is determined mainly by the SOC, and the scattering
of magnetic impurities only reduces the amplitudes of pre-
cession.

In Figure 5, we present the spatial distribution of (s.)
of tunneling electrons in the square lattice. The upper
panel corresponds to the case of positive SHC, while the
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Fig. 4. Spin Hall conductance as a function of the Rashba
spin-orbit coupling strength for different values of the impurity
density and exchange interaction. The size of system is 20 x 20,
and the electron Fermi energy is £ = —2t.

lower panel shows the case of negative SHC. As can be seen
from the figure, the spatial variation of spin polarization
in a specific sample due to the spin precession and spin
flip-flop scattering is rather random, although a finite G5y
can be obtained by structural averaging.

4 Conclusions

In this paper, we have focussed on the study of the spin
Hall effect influenced by the scattering of magnetic impuri-
ties in systems with Rashba spin-orbit coupling. We find a
non-vanishing spin Hall conductance, even in cases where
the impurity density and exchange interaction is large. In
addition, the change of sign of the spin Hall conductance
can also be obtained by varying the impurity density and
the strength of the exchange interaction, which is differ-
ent from that in nonmagnetic impurities doping systems.
These results are due to the spin flip-flop scattering caused
by magnetic impurities. Such scattering is “biased” in the
presence of SOC, leading to an asymmetric effect on the
spin up and down states.
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Fig. 5. The Spatial distribution of spin polarization (s.) of
tunneling electrons in a square lattice with size L = 20.
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